To date, four subgroups of avian metapneumoviruses have been defined (AMPV-A, B, C and D) based on genetic and antigenic differences. The extent of infection in the three principal species (turkeys, chickens and ducks) by these subgroups is, however, not well defined. Here, a series of controlled and ethically approved experimental infections were performed in specific pathogen-free turkeys, chickens and ducks with each of the four AMPV subgroups.
View Article and Find Full Text PDFPLoS One
November 2015
Four avian metapneumovirus (AMPV) subgroups (A-D) have been reported previously based on genetic and antigenic differences. However, until now full length sequences of the only known isolates of European subgroup C and subgroup D viruses (duck and turkey origin, respectively) have been unavailable. These full length sequences were determined and compared with other full length AMPV and human metapneumoviruses (HMPV) sequences reported previously, using phylogenetics, comparisons of nucleic and amino acid sequences and study of codon usage bias.
View Article and Find Full Text PDFInfectious bursal disease virus (IBDV) causes an economically significant disease of chickens worldwide. Very virulent IBDV (vvIBDV) strains have emerged and induce as much as 60% mortality. The molecular basis for vvIBDV pathogenicity is not understood, and the relative contributions of the two genome segments, A and B, to this phenomenon are not known.
View Article and Find Full Text PDFBackground: Infectious bursal disease virus (IBDV) is a pathogen of worldwide significance to the poultry industry. IBDV has a bi-segmented double-stranded RNA genome. Segments A and B encode the capsid, ribonucleoprotein and non-structural proteins, or the virus polymerase (RdRp), respectively.
View Article and Find Full Text PDFAvian metapneumovirus (AMPV) causes turkey rhinotracheitis and is associated with swollen head syndrome in chickens, which is usually accompanied by secondary infections that increase mortality. AMPVs circulating in Brazilian vaccinated and nonvaccinated commercial chicken and turkey farms were detected using a universal reverse transcriptase (RT)-PCR assay that can detect the four recognized subtypes of AMPV. The AMPV status of 228 farms with respiratory and reproductive disturbances was investigated.
View Article and Find Full Text PDF