Circular dichroism second harmonic generation microscopy (CDSHG) is a powerful imaging technique, which allows three-dimensional visualization of collagen fibril orientation in tissues. However, recent publications have obtained contradictory results on whether CDSHG can be used to reveal the relative out-of-plane polarity of collagen fibrils. Here we compare CDSHG images of unstained tendon and tendon which has been stained with hematoxylin and eosin.
View Article and Find Full Text PDFWe previously developed a computer-assisted image analysis algorithm to detect and quantify the microscopic features of rodent progressive cardiomyopathy (PCM) in rat heart histologic sections and validated the results with a panel of five veterinary toxicologic pathologists using a multinomial logistic model. In this study, we assessed both the inter-rater and intra-rater agreement of the pathologists and compared pathologists' ratings to the artificial intelligence (AI)-predicted scores. Pathologists and the AI algorithm were presented with 500 slides of rodent heart.
View Article and Find Full Text PDFSecond harmonic generation (SHG) microscopy has emerged as a powerful technique for visualizing collagen organization within tissues. Amongst the many advantages of SHG is its sensitivity to collagen nanoscale organization, and its presumed sensitivity to the relative out of plane polarity of fibrils. Recent results have shown that circular dichroism SHG (CD-SHG), a technique that has been commonly assumed to reveal the relative out of plane polarity of collagen fibrils, is actually insensitive to changes in fibril polarity.
View Article and Find Full Text PDFAlterations in collagen ultrastructure between human gastric adenocarcinoma and normal gastric tissue were investigated using polarization-resolved second harmonic generation (PSHG) microscopy. Cylindrical and trigonal symmetries were assumed to extract quantitative PSHG parameters, , and , from each image pixel. Statistically significant variations in these values were observed for gastric adenocarcinoma, indicating a higher disorder of collagen.
View Article and Find Full Text PDFSecond harmonic generation (SHG) microscopy is a commonly used technique to study the organization of collagen within tissues. However, individual collagen fibrils, which have diameters much smaller than the resolution of most optical systems, have not been extensively investigated. Here we probe the structure of individual collagen fibrils using polarization-resolved SHG (PSHG) microscopy and atomic force microscopy.
View Article and Find Full Text PDF