Nasal cycle (NC) is a rhythmic change of lateralised nasal airflow mediated by the autonomous nervous system. Previous studies reported the dependence of NC dominance or more patent side on handedness and hemispheric cerebral activity. We aimed to investigate firstly the possible lateralised effect of NC on olfactory bulb volume and secondly the association of NC with the lateralised cerebral dominance in terms of olfactory processing.
View Article and Find Full Text PDFObjective: Parosmia is a qualitative olfactory dysfunction presenting as "distorted odor perception" in presence of an odor source. Aim of this study was to use resting state functional connectivity to gain more information on the alteration of olfactory processing at the level of the central nervous system level.
Methods: A cross sectional study was performed in 145 patients with parosmia (age range 20-76 years; 90 women).
Introduction: In contrast to other sensory domains, detection of primary olfactory processes using functional magnetic resonance imaging has proven to be notably challenging with conventional block designs. This difficulty arises from significant habituation and hemodynamic responses in olfactory areas that do not appear to align with extended boxcar functions convolved with a generic hemodynamic response model. Consequently, some researchers have advocated for a transition to event-related designs, despite their known lower detection power compared to block designs.
View Article and Find Full Text PDFJAMA Otolaryngol Head Neck Surg
January 2024
Eur Arch Otorhinolaryngol
October 2023
Purpose: In a previous neuroimaging study, patients with taste loss showed stronger activations in gustatory cortices compared to people with normal taste function during taste stimulations. The aim of the current study was to examine whether there are changes in central-nervous functional connectivity in patients with taste loss.
Methods: We selected 26 pairs of brain regions related to taste processing as our regions of interests (ROIs).