This paper presents the development of a novel high-pressure/high-temperature reactor cell dedicated to the characterization of catalysts using synchrotron x-ray absorption spectroscopy under operando conditions. The design of the vitreous carbon reactor allows its use as a plug-flow reactor, monitoring catalyst samples in a powder form with a continuous gas flow at high-temperature (up to 1000 °C) and under high pressure (up to 1000 bar) conditions, depending on the gas environment. The high-pressure/high-temperature reactor cell incorporates an automated gas distribution system and offers the capability to operate in both transmission and fluorescence detection modes.
View Article and Find Full Text PDFThe structure of the uranyl aqua ion (UO) and a number of its inorganic complexes (specifically, UOCl, UOCl, UOSO, [Formula: see text] , [Formula: see text] and UOOH) have been characterised using X-Ray absorption spectroscopy/extended X-Ray absorption fine structure (XAS/EXAFS) at temperatures ranging from 25 to 326 ºC. Results of ab initio molecular dynamics (MD) calculations are also reported for uranyl in chloride and sulfate-bearing fluids from 25 to 400 ºC and 600 bar to 20 kilobar (kb). These results are reported alongside a comprehensive review of prior structural characterisation work with particular focus given to EXAFS works to provide a consistent and up-to-date view of the structure of these complexes under conditions relevant to U mobility in ore-forming systems and around high-grade nuclear waste repositories.
View Article and Find Full Text PDFThe research on strategies to reduce cadmium (Cd) accumulation in cacao beans is currently limited by a lack of understanding of the Cd transfer pathways within the cacao tree. Here, we elucidated the transfer of Cd from soil to the nib (seed) in a high Cd accumulating cacao cultivar. Here, we elucidated the transfer of Cd from soil to the nib (seed) in a high Cd accumulating cacao cultivar through Cd stable isotope fractionation, speciation (X-Ray Absorption Spectroscopy), and localization (Laser Ablation Inductively Coupled Plasma Mass Spectrometry).
View Article and Find Full Text PDFRare earth elements (REE), essential metals for the transition to a zero-emission economy, are mostly extracted from REE-fluorcarbonate minerals in deposits associated with carbonatitic and/or peralkaline magmatism. While the role of high-temperature fluids (100 < T < 500 °C) in the development of economic concentrations of REE is well-established, the mechanisms of element transport, ore precipitation, and light (L)REE/heavy (H)REE fractionation remain a matter of debate. Here, we provide direct evidence from in-situ X-ray Absorption Spectroscopy (XAS) that the formation of hydroxyl-carbonate complexes in alkaline fluids enhances hydrothermal mobilization of LREE at T ≥ 400 °C and HREE at T ≤ 200 °C, even in the presence of fluorine.
View Article and Find Full Text PDF