Publications by authors named "D T Osuga"

The activity of antifreeze glycoprotein from the blood serum of Boreagadus saida was strongly inhibited by ions of organic boronic acids as well as by borate. The activity of nonglycoprotein from the blood serum of Pseudopleuronectus americanus, however, was not similarly inhibited. The inhibition by borate is thus specific for molecules with the carbohydrate moiety.

View Article and Find Full Text PDF

Amino acids and peptides have been attached to the C-6 hydroxyls of the galactose and the N-acetylgalactosamine by first oxidizing the C-6 hydroxyls to the aldehydes by galactose oxidase in the presence of small amounts of catalase, followed by reductive amination (alpha-amino group) in the presence of cyanoborohydride. The activity of oxidized antifreeze glycoprotein was greater than 70% of the original, and considerable activity has been retained with some substitutions on reductive amination using cyanoborohydride. The following were some activities retained (as compared with the oxidized antifreeze glycoprotein): Gly, 64; (Gly)2, 88; (Gly)3, 82; (Gly)4, 70; Gly-Gly-NH2, 44; Gly-Glu, 13; Gly-Leu, 40; Gly-Tyr, 57; Gly-Gly-Leu, 50; Gly-Gly-Phe, 30; and Gly-Gly-Val, 35.

View Article and Find Full Text PDF

Some of the more interesting and important proteins are those that function by forming associations or complexes with other substances. The structure-function relationships of three of these with very different substances are transferrins, which chelate metal ions; avian ovomucoids, which form complexes with proteolytic enzymes; and antifreeze glycoproteins, which interact at the ice-solution interface. Interrelating studies on the comparative biochemistry with studies using chemical modification have helped identify the side-chain groups of the proteins involved in function as well as to be useful for studies on general protein chemistry.

View Article and Find Full Text PDF

The interaction of various anions with human serum transferrin was investigated due to the concomitant binding of iron and a synergistic anion to form the transferrin-anion-iron complex. Two tetrahedral oxyanion oxidizing agents, periodate and permanganate, were found to partially inactivate transferrin when used at equimolar ratios of oxidizing agent to protein active sites. Hypochlorite, a strong oxidizing agent with little structural similarity to periodate and permanganate, had little effect on iron-binding activity when used at similar low molar ratios of reagent to transferrin active sites.

View Article and Find Full Text PDF

The antifreeze glycoproteins (AFGP) of polar fish have the ability to depress the freezing temperature of water approximately 500 times the amount expected based on the number of AFGP molecules in solution; yet AFGP solutions have a purely colligative melting point depression. The difference of solution melting and freezing temperatures is the antifreeze activity of AFGP. One characteristic of AFGP activity that requires further examination is the effect of concentration on antifreeze activity, especially whether the activity saturates at high concentrations or the measured activity increases ad infinitum.

View Article and Find Full Text PDF