Spectrochim Acta A Mol Biomol Spectrosc
February 2025
The present study aims to understand changes in the Hemoglobin (Hb) structure in the presence of a triazine based covalent organic framework (COF) through spectroscopic characterization. Covalent Organic Frameworks (COFs) due to their unique properties have been utilized in diverse fields including bio-applications. Utilization of COFs for conjugate formation with proteins will lead to the integration of biology and framework materials that can help in the development of bioconjugates for advanced bio-based applications such as diagnostics, therapeutics, and bioengineering.
View Article and Find Full Text PDFThermoresponsive polymers (TRPs) have been explored over decades for biomedical applications, and poly(-vinylcaprolactam) (PVCL) TRP is extensively investigated due to its low toxicity and lower critical solution temperature (LCST), close to physiological temperatures. Besides this, the utilization of covalent organic frameworks (COFs), which belong to a class of porous polymers, in bio-based applications is of great interest due to their remarkable properties. Thus, the integration of PVCL and covalent organic frameworks (COFs) as conjugate materials can lead to advanced bio-based applications; however, the need is to understand the influence of the COF on the PVCL conformation.
View Article and Find Full Text PDFTransition metal-Schiff base complexes are found to be important for biomedical applications but have demerits of being homogeneous complexes, thus their synthesis on the surface of graphene oxide nanoribbons (GONRs), materials of specific interest, can be beneficial for preparing advanced graphene-based materials for biomedical applications. Of foremost importance is their safety and biocompatibility with biological systems. In this study, a transition metal-Schiff base complex has been synthesized on the surface of a GONR (Ni-S-GNR) using 3-aminopropyltriethoxysilane and pyridine-2-carbaldehyde and complexing nickel.
View Article and Find Full Text PDFBioinspired delta-bismuth oxide nanoparticles (δ-BiO NPs) have been synthesized using a greener reducing agent and surfactant co-precipitation method. The originality of this work is the use of flower extract for the first time for the fabrication of NPs, which were further calcined at 800 °C to obtain δ-BiO NPs. Physicochemical studies such as FTIR spectroscopy and XPS confirmed the formation of BiO NPs, whereas XRD and Raman verified the formation of the cubic delta (δ) phase of BiO NPs.
View Article and Find Full Text PDFThe present work demonstrated a novel -mediated green fabrication of nickel oxide nanoparticles (NiO NPs) to explore toxicity in Bm-17 and liver cells. As-fabricated bioinspired NiO NPs were characterized by several analytical techniques. X-ray diffraction (XRD) revealed a crystalline face-centered-cubic structure.
View Article and Find Full Text PDF