The aim of this study was to investigate the transition from non-covalent reversible over covalent reversible to covalent irreversible inhibition of cysteine proteases by making delicate structural changes to the warhead scaffold. To this end, dipeptidic rhodesain inhibitors with different -terminal electrophilic arenes as warheads relying on the SAr mechanism were synthesized and investigated. Strong structure-activity relationships of the inhibition potency, the degree of covalency, and the reversibility of binding on the arene substitution pattern were found.
View Article and Find Full Text PDFDrachmann's regularization approach is implemented for floating explicitly correlated Gaussians (fECGs) and molecular systems. Earlier applications of drachmannized relativistic corrections for molecular systems were hindered due to the unknown analytic matrix elements of 1/rix1/rjy-type operators with fECGs. In the present work, one of the 1/r factors is approximated by a linear combination of Gaussians, which results in calculable integrals.
View Article and Find Full Text PDFInteractions in atomic and molecular systems are dominated by electromagnetic forces and the theoretical framework must be in the quantum regime. The physical theory for the combination of quantum mechanics and electromagnetism, quantum electrodynamics has been "established" by the mid-twentieth century, primarily as a scattering theory. To describe atoms and molecules, it is important to consider bound states.
View Article and Find Full Text PDFA general computational scheme for the (nonrelativistic) Bethe logarithm is developed, opening the route to "routine" evaluation of the leading-order quantum electrodynamics correction (QED) relevant for spectroscopic applications for small polyatomic and polyelectronic molecular systems. The implementation relies on the Schwartz method and minimization of a Hylleraas functional. In relation with electronically excited states, a projection technique is considered, which ensures positive definiteness of the functional over the entire parameter (photon momentum) range.
View Article and Find Full Text PDFVariational and perturbative relativistic energies are computed and compared for two-electron atoms and molecules with low nuclear charge numbers. In general, good agreement of the two approaches is observed. Remaining deviations can be attributed to higher-order relativistic, also called non-radiative quantum electrodynamics (QED), corrections of the perturbative approach that are automatically included in the variational solution of the no-pair Dirac-Coulomb-Breit (DCB) equation to all orders of the α fine-structure constant.
View Article and Find Full Text PDF