Alfalfa is the most widely grown forage crop worldwide and is thought to be a significant carbon sink due to high productivity, extensive root systems, and nitrogen-fixation. However, these conditions may increase nitrous oxide (NO) emissions thus lowering the climate change mitigation potential. We used a suite of long-term automated instrumentation and satellite imagery to quantify patterns and drivers of greenhouse gas fluxes in a continuous alfalfa agroecosystem in California.
View Article and Find Full Text PDFJ Geophys Res Biogeosci
August 2022
In this study, we propose a new technique for mapping the spatial heterogeneity in gas exchange around flux towers using flux footprint modeling and focusing on detecting hot spots of methane (CH) flux. In the first part of the study, we used a CH release experiment to evaluate three common flux footprint models: the Hsieh model (Hsieh et al., 2000), the Kljun model (Kljun et al.
View Article and Find Full Text PDFReliable partitioning of micrometeorologically measured evapotranspiration (ET) into evaporation (E) and transpiration (T) would greatly enhance our understanding of the water cycle and its response to climate change related shifts in local-to-regional climate conditions and rising global levels of vapor pressure deficit (VPD). While some methods on ET partitioning have been developed, their underlying assumptions make them difficult to apply more generally, especially in sites with large contributions of E. Here, we report a novel ET partitioning method using artificial neural networks (ANNs) in combination with a range of environmental input variables to predict daytime E from nighttime ET measurements.
View Article and Find Full Text PDFThe concentration of nitrous oxide (NO), an ozone-depleting greenhouse gas, is rapidly increasing in the atmosphere. Most atmospheric NO originates in terrestrial ecosystems, of which the majority can be attributed to microbial cycling of nitrogen in agricultural soils. Here, we demonstrate how the abundance of nitrogen cycling genes vary across intensively managed agricultural fields and adjacent restored wetlands in the Sacramento-San Joaquin Delta in California, USA.
View Article and Find Full Text PDFInundated wetlands can potentially sequester substantial amounts of soil carbon (C) over the long-term because of slow decomposition and high primary productivity, particularly in climates with long growing seasons. Restoring such wetlands may provide one of several effective negative emission technologies to remove atmospheric CO2 and mitigate climate change. However, there remains considerable uncertainty whether these heterogeneous ecotones are consistent net C sinks and to what degree restoration and management methods affect C sequestration.
View Article and Find Full Text PDF