Abscisic acid (ABA) is a crucial player in plant responses to the environment. It accumulates under stress, activating downstream signaling to implement molecular responses that restore homeostasis. Natural variance in ABA sensitivity remains barely understood, and the ABA pathway has been mainly studied at the transcriptional level, despite evidence that posttranscriptional regulation, namely, via alternative splicing, contributes to plant stress tolerance.
View Article and Find Full Text PDFSerine/arginine-rich (SR) proteins are conserved splicing regulators that play important roles in plant stress responses, namely those mediated by the abscisic acid (ABA) hormone. The Arabidopsis thaliana SR-like protein SR45 is a described negative regulator of the ABA pathway during early seedling development. How the inhibition of growth by ABA signaling is counteracted to maintain plant development under stress conditions remains largely unknown.
View Article and Find Full Text PDFThe abscisic acid (ABA) phytohormone is well known to regulate responses to abiotic stress, particularly tolerance to osmotic stress. Screening for phenotypes at the early plant development stages is fundamental to identify new regulators of the ABA pathway, which in turn is extremely relevant for agriculture in a global climate change context. Typically, under experimental conditions, seeds are germinated in hormone-containing plates, and postgermination development is then assessed through scoring of the appearance of green or expanded cotyledons.
View Article and Find Full Text PDF