Publications by authors named "D Stremler-van Holten"

The rates, yields, mechanisms and directionality of electron transfer (ET) are explored in twelve pairs of Rhodobacter (R.) sphaeroides and R. capsulatus mutant RCs designed to defeat ET from the excited primary donor (P*) to the A-side cofactors and re-direct ET to the normally inactive mirror-image B-side cofactors.

View Article and Find Full Text PDF

The development of chromophores that absorb in the near-infrared (NIR) region beyond 1000 nm underpins numerous applications in medical and energy sciences, yet also presents substantial challenges to molecular design and chemical synthesis. Here, the core bacteriochlorin chromophore of nature's NIR absorbers, bacteriochlorophylls, has been adapted and tailored by annulation in an effort to achieve absorption in the NIR-II region. The resulting bacteriochlorin, Phen2,1-BC, contains two annulated naphthalene groups spanning ,β-positions of the bacteriochlorin and the 1,2-positions of the naphthalene.

View Article and Find Full Text PDF

Bacteriochlorophylls, nature's near-infrared absorbers, play an essential role in energy transfer in photosynthetic antennas and reaction centers. To probe energy-transfer processes akin to those in photosynthetic systems, nine synthetic bacteriochlorin-bacteriochlorin dyads have been prepared wherein the constituent pigments are joined at the -positions by a phenylethyne linker. The phenylethyne linker is an unsymmetric auxochrome, which differentially shifts the excited-state energies of the phenyl- or ethynyl-attached bacteriochlorin constituents in the dyad.

View Article and Find Full Text PDF

A new pentad array designed to exhibit panchromatic absorption and charge separation has been synthesized and characterized. The array is composed of a triad panchromatic absorber (a bis(perylene-monoimide)-porphyrin) to which are appended an electron acceptor (perylene-diimide) and an electron donor/hole acceptor (bacteriochlorin) in a crossbar arrangement. The motivation for incorporation of the bacteriochlorin a free-base or zinc chlorin utilized in prior constructs was to facilitate hole transfer to this terminal unit and thereby achieve a higher yield of charge separation across the array.

View Article and Find Full Text PDF

A panchromatic triad and a charge-separation unit are joined in a crossbar architecture to capture solar energy. The panchromatic-absorber triad (T) is comprised of a central free-base porphyrin that is strongly coupled direct ethyne linkages to two perylene-monoimide (PMI) groups. The charge-separation unit incorporates a free-base or zinc chlorin (C or ZnC) as a hole acceptor (or electron donor) and a perylene-diimide (PDI) as an electron acceptor, both attached to the porphyrin diphenylethyne linkers.

View Article and Find Full Text PDF