When main-sequence stars expand into red giants, they are expected to engulf close-in planets. Until now, the absence of planets with short orbital periods around post-expansion, core-helium-burning red giants has been interpreted as evidence that short-period planets around Sun-like stars do not survive the giant expansion phase of their host stars. Here we present the discovery that the giant planet 8 Ursae Minoris b orbits a core-helium-burning red giant.
View Article and Find Full Text PDFAsteroseismology probes the internal structures of stars by using their natural pulsation frequencies. It relies on identifying sequences of pulsation modes that can be compared with theoretical models, which has been done successfully for many classes of pulsators, including low-mass solar-type stars, red giants, high-mass stars and white dwarfs. However, a large group of pulsating stars of intermediate mass-the so-called δ Scuti stars-have rich pulsation spectra for which systematic mode identification has not hitherto been possible.
View Article and Find Full Text PDFWe present a survey of variable stars detected in Campaign 13 within the massive intermediate-age (~1 Gyr) open cluster NGC 1817. We identify a complete sample of 44 red clump stars in the cluster, and have measured asteroseismic quantities ( and/or Δ) for 29 of them. Five stars showed suppressed dipole modes, and the occurrence rates indicate that mode suppression is unaffected by evolution through core helium burning.
View Article and Find Full Text PDFSimulations predict that hot super-Earth sized exoplanets can have their envelopes stripped by photoevaporation, which would present itself as a lack of these exoplanets. However, this absence in the exoplanet population has escaped a firm detection. Here we demonstrate, using asteroseismology on a sample of exoplanets and exoplanet candidates observed during the Kepler mission that, while there is an abundance of super-Earth sized exoplanets with low incident fluxes, none are found with high incident fluxes.
View Article and Find Full Text PDFMagnetic fields play a part in almost all stages of stellar evolution. Most low-mass stars, including the Sun, show surface fields that are generated by dynamo processes in their convective envelopes. Intermediate-mass stars do not have deep convective envelopes, although 10 per cent exhibit strong surface fields that are presumed to be residuals from the star formation process.
View Article and Find Full Text PDF