Large-eddy simulations (LES) coupled to a model that simulates methane emissions from oil and gas production facilities are used to generate realistic distributions of meteorological variables and methane concentrations. These are sampled to obtain simulated observations used to develop and evaluate source term estimation (STE) methods. A widely used EPA STE method (OTM33A) is found to provide emission estimates with little bias when averaged over six time periods and seven well pads.
View Article and Find Full Text PDFThe mosquito transmits the viruses that cause dengue and chikungunya, two globally-important vector-borne diseases. We investigate how choosing alternate emissions and/or socioeconomic pathways may modulate future human exposure to . Occurrence patterns for for 2061-2080 are mapped globally using empirically downscaled air temperature and precipitation projections from the Community Earth System Model, for the Representative Concentration Pathway (RCP) 4.
View Article and Find Full Text PDFThe mosquito virus vector () exploits a wide range of containers as sites for egg laying and development of the immature life stages, yet the approaches for modeling meteorologically sensitive container water dynamics have been limited. This study introduces the Water Height and Temperature in Container Habitats Energy Model (WHATCH'EM), a state-of-the-science, physically based energy balance model of water height and temperature in containers that may serve as development sites for mosquitoes. The authors employ WHATCH'EM to model container water dynamics in three cities along a climatic gradient in México ranging from sea level, where is highly abundant, to ~2100 m, where is rarely found.
View Article and Find Full Text PDFIntroduction: An ongoing Zika virus pandemic in Latin America and the Caribbean has raised concerns that travel-related introduction of Zika virus could initiate local transmission in the United States (U.S.) by its primary vector, the mosquito Aedes aegypti.
View Article and Find Full Text PDFBackground: Cooking over open fires using solid fuels is both common practice throughout much of the world and widely recognized to contribute to human health, environmental, and social problems. The public health burden of household air pollution includes an estimated four million premature deaths each year. To be effective and generate useful insight into potential solutions, cookstove intervention studies must select cooking technologies that are appropriate for local socioeconomic conditions and cooking culture, and include interdisciplinary measurement strategies along a continuum of outcomes.
View Article and Find Full Text PDF