Publications by authors named "D Sossong"

Spheroids are a promising tool for many cell culture applications, but their microscopic analysis is limited. Flow cytometry on a single cell basis, which requires a gentle but also efficient dissociation of spheroids, could be an alternative analysis. Mono-culture and coculture spheroids consisting of human fibroblasts and human endothelial cells were generated by the liquid overlay technique and were dissociated using AccuMax as a dissociation agent combined with gentle mechanical forces.

View Article and Find Full Text PDF

Background: Spheroids are considered to reflect the natural organization of cells better than 2D cell cultures, but their analysis by flow cytometry requires dissociation into single cells.

Methods: We established protocols for dissociation of mono- and co-culture spheroids consisting of human fibroblasts and human endothelial cells. Cell recovery rate and viability after dissociation were evaluated with hemocytometer and by flow cytometry.

View Article and Find Full Text PDF

Despite the regenerative capability of bone, treatment of large defects often requires bone grafts. The challenge for bone grafting is to establish rapid and sufficient vascularization. Three-dimensional (3D) multicellular spheroids consisting of the relevant cell types can be used as "mini tissues" to study the complexity of angiogenesis.

View Article and Find Full Text PDF

Background Aims: The 3-dimensional (3-D) culture of various cell types reflects the in vivo situation more precisely than 2-dimensional (2-D) cell culture techniques. Spheroids as 3-D cell constructs have been used in tumor research for a long time. They have also been used to study angiogenic mechanisms, which are essential for the success of many tissue-engineering approaches.

View Article and Find Full Text PDF

The development of micro- and nanostructured surfaces which improve the cell-substrate interaction is of great interest in today's implant applications. In this regard, Al/Al2O3 bi-phasic nanowires were synthesized by chemical vapor deposition of the molecular precursor (tBuOAlH2)2. Heat treatment of such bi-phasic nanowires with short laser pulses leads to micro- and nanostructured Al2O3 surfaces.

View Article and Find Full Text PDF