Human TE-671 cells have been used to study several aspects of neuroectodermal tumors in culture. Since the human TE-671 cell lines has been re-identified as a rhabdomyosarcoma (RD) rather than a medulloblastoma due to the presence of muscle-type nicotinic acetylcholine receptors, we re-investigated the nature of RD/TE-671 cells and characterized their differentiation induced by 2-(3-ethylureido)-6-methylpyridine (UDP-4), a potent inducer of differentiation of neoplastic cells. RD cells were also used for comparative studies.
View Article and Find Full Text PDFAuto-antibodies to the nicotine acetylcholine receptor (AChR) cause the disease myasthenia gravis (MG). Animals immunized with AChR or receiving anti-AChR antibodies acquire MG symptoms. The majority of the monoclonal antibodies (mAbs) raised in rats against intact AChR bind to a region on the extracellular side of the AChR's alpha-subunit, the main immunogenic region (MIR).
View Article and Find Full Text PDFHelicobacter pylori infection is strongly associated with chronic gastritis and peptic ulceration. As the prevalence of H. pylori infection in southern European populations is not known, a serological survey of 1069 samples from three different age groups in the Greek population was carried out with an enzyme-linked immunosorbent assay (ELISA) for antibodies to these bacteria.
View Article and Find Full Text PDFThe human cell line TE671 produces large amounts of muscle nicotinic acetylcholine receptor (AChR). TE671 cells were used to determine the specificity of antibodies which can increase the internalization rate of AChR (antigenic modulation) and to test procedures for protecting AChR against this mechanism. The half-life of AChR both in the absence and the presence of anti-AChR antibodies was very similar to that of AChR on human muscle cell cultures.
View Article and Find Full Text PDFAntibodies to the acetylcholine receptor (AChR) added to AChR-bearing muscle cells cross-link the receptors, thus increasing their internalization and degradation rate (antigenic modulation). This mechanism contributes to AChR loss in myasthenia gravis. Until recently, antigenic modulation has been studied in animal tissues, where only a small fraction of human anti-AChR antibodies bind.
View Article and Find Full Text PDF