Phys Chem Chem Phys
October 2021
We introduce a novel and sensitive ns-resolved atomic magnetometer, which is at least three orders of magnitude faster than conventional magnetometers. We use the magnetic field dependence of the hyperfine beating of high-density spin-polarized H atoms, produced from the rapid photodissociation of HCl gas with sub-ns laser pulses and measured with a pick-up coil, to demonstrate ns-resolved magnetometry, and project sensitivity of a few nT for a spin-projection-limited sensor with 10 nl measurement volume after 1 ns measurement time. The magnetometer will allow ultrafast continuous -field measurements in many fields, including spin chemistry, spin physics, and plasma physics.
View Article and Find Full Text PDFLight Sci Appl
February 2021
Recently, our group produced spin-polarized hydrogen (SPH) atoms at densities of at least 10 cm from the photodissociation of hydrogen halide molecules with circularly polarized UV light and measured them via magnetization-quantum beats with a pickup coil. These densities are approximately 7 orders of magnitude higher than those produced using conventional methods, opening up new fields of application, such as ultrafast magnetometry, the production of polarized MeV and GeV particle beams, such as electron beams with intensities approximately 10 higher than current sources, and the study of polarized nuclear fusion, for which the reaction cross sections of D-T and D-He reactions are expected to increase by 50% for fully polarized nuclear spins. We review the production, detection, depolarization mechanisms, and potential applications of high-density SPH.
View Article and Find Full Text PDFWe measure the magnetization quantum beats of spin-polarized hydrogen (SPH) and spin-polarized deuterium (SPD) with a pickup coil, from the UV photodissociation of HCl, HBr, and DI, in the 5-5000 mbar pressure range. The pressure-dependent depolarization rate is linear at low pressures and reaches a plateau at higher pressures. The high-pressure depolarization rate is observed to be proportional to the halogen nuclear electric quadrupole coupling constant.
View Article and Find Full Text PDFWe report the electron-spin polarization of D atoms from the photodissociation of DI, at 213 nm and 266 nm, by measuring the magnetization quantum beats of the D atoms with a pick-up coil. We determine that the polarization P is large at both wavelengths (|P|∼ 1), however it is positive at 213 nm, and negative at 266 nm. These results, in both cases, are of opposite sign to calculations, which assume adiabatic dissociation along the AΠ or aΠ states.
View Article and Find Full Text PDFWe measure nuclear and electron spin-polarized H and D densities of at least 10^{19} cm^{-3} with ∼10 ns lifetimes, from the photodissociation of HBr and DI with circularly polarized UV light pulses. This density is ∼6 orders of magnitude higher than that produced by conventional continuous-production methods and, surprisingly, at least 100 times higher than expected densities for this photodissociation method. We observe the hyperfine quantum beating of the H and D magnetization with a pickup coil, i.
View Article and Find Full Text PDF