Mol Ther Oncolytics
September 2022
Chimeric antigen receptor (CAR) T cell therapy has demonstrated unprecedented success with high remission rates for heavily pretreated patients with hematological malignancies. The hinge connecting the extracellular antigen recognition unit to the transmembrane domain provides the length and flexibility of the CAR constructs and ensures that the CAR can reach the target antigen and mediate recognition and killing of target cells. The hinge can also include specific amino acid sequences to improve CAR expression, influence T cell proliferation, and facilitate CAR T cell detection, enrichment, and even elimination.
View Article and Find Full Text PDFThe great clinical success of chimeric antigen receptor (CAR) T cells has unlocked new levels of immunotherapy for hematological malignancies. Genetically modifying natural killer (NK) cells as alternative CAR immune effector cells is also highly promising, as NK cells can be transplanted across HLA barriers without causing graft-versus-host disease. Therefore, usage of CAR NK cell products might allow to widely expand the clinical indications and to limit the costs of treatment per patient.
View Article and Find Full Text PDFImmunotherapy including chimeric antigen receptor (CAR) T cell therapy has revolutionized modern cancer therapy and has achieved remarkable remission and survival rates for several malignancies with historically dismal outcomes. The hinge of the CAR connects the antigen binding to the transmembrane domain and can be exploited to confer features to CAR T cells including additional stimulation, targeted elimination or detection and enrichment of the genetically modified cells. For establishing a novel hinge derived from human CD34, we systematically tested CD34 fragments of different lengths, all containing the binding site of the QBend-10 monoclonal antibody, in a FMC63-based CD19 CAR lentiviral construct.
View Article and Find Full Text PDFBackground: Human breast milk could be an important stem cell source for the development of newborn and preterm infants, but quantitative data on the stem cell content in breast milk at various gestational stages are needed to determine the clinical value of breast milk as a source of stem cells. Breast milk also contains milk fat globules, lipid droplets of different sizes, debris and dead cells and these components hamper flow cytometry analysis of human breast milk samples.
Methods: Here, we originally used standard protocols for flow cytometry to characterize cell populations in human breast milk but failed to discriminate between cells and noncellular components.
Inflammation promotes phenotypic plasticity in melanoma, a source of non-genetic heterogeneity, but the molecular framework is poorly understood. Here we use functional genomic approaches and identify a reciprocal antagonism between the melanocyte lineage transcription factor MITF and c-Jun, which interconnects inflammation-induced dedifferentiation with pro-inflammatory cytokine responsiveness of melanoma cells favouring myeloid cell recruitment. We show that pro-inflammatory cytokines such as TNF-α instigate gradual suppression of MITF expression through c-Jun.
View Article and Find Full Text PDF