Publications by authors named "D Slijepcevic"

The correct estimation of gait events is essential for the interpretation and calculation of 3D gait analysis (3DGA) data. Depending on the severity of the underlying pathology and the availability of force plates, gait events can be set either manually by trained clinicians or detected by automated event detection algorithms. The downside of manually estimated events is the tedious and time-intensive work which leads to subjective assessments.

View Article and Find Full Text PDF

Placing a stronger focus on subject-specific responses to footwear may lead to a better functional understanding of footwear's effect on running and its influence on comfort perception, performance, and pathogenesis of injuries. We investigated subject-specific responses to different footwear conditions within ground reaction force (GRF) data during running using a machine learning-based approach. We conducted our investigation in three steps, guided by the following hypotheses: (I) For each subject x footwear combination, unique GRF patterns can be identified.

View Article and Find Full Text PDF

Human gait is a complex and unique biological process that can offer valuable insights into an individual's health and well-being. In this work, we leverage a machine learning-based approach to model individual gait signatures and identify factors contributing to inter-individual variability in gait patterns. We provide a comprehensive analysis of gait individuality by (1) demonstrating the uniqueness of gait signatures in a large-scale dataset and (2) highlighting the gait characteristics that are most distinctive to each individual.

View Article and Find Full Text PDF

The Gutenberg Gait Database comprises data of 350 healthy individuals recorded in our laboratory over the past seven years. The database contains ground reaction force (GRF) and center of pressure (COP) data of two consecutive steps measured - by two force plates embedded in the ground - during level overground walking at self-selected walking speed. The database includes participants of varying ages, from 11 to 64 years.

View Article and Find Full Text PDF

The quantification of ground reaction forces (GRF) is a standard tool for clinicians to quantify and analyze human locomotion. Such recordings produce a vast amount of complex data and variables which are difficult to comprehend. This makes data interpretation challenging.

View Article and Find Full Text PDF