Spin resonances can depolarize or spin flip a polarized beam. We studied 1st and higher order spin resonances with stored 2.1 GeV/c vertically polarized protons.
View Article and Find Full Text PDFWe used an rf solenoid to study the widths of rf spin resonances with both bunched and unbunched beams of 1.85 GeV/c polarized deuterons stored in the COSY synchrotron. With the unbunched beam at different fixed rf-solenoid frequencies, we observed only partial depolarization near the resonance.
View Article and Find Full Text PDFWe recently tested a new spin resonance crossing technique, Kondratenko Crossing (KC), by sweeping an rf-solenoid's frequency through an rf-induced spin resonance with both the KC and traditional fast crossing (FC) patterns. Using both rf bunched and unbunched 1.85 GeV/c polarized deuterons stored in COSY, we varied the parameters of both crossing patterns.
View Article and Find Full Text PDFThe Chao matrix formalism allows analytic calculations of a beam's polarization behavior inside a spin resonance. We recently tested its prediction of polarization oscillations occurring in a stored beam of polarized particles near a spin resonance. Using a 1.
View Article and Find Full Text PDFWe recently studied spin flipping of a 270 MeV vertically polarized deuteron beam stored in the Indiana University Cyclotron Facility Cooler Ring. We adiabatically swept an rf solenoid's frequency through an rf-induced spin resonance and observed its effect on the deuterons' vector and tensor polarizations. After optimizing the resonance crossing rate and maximizing the solenoid's voltage, we measured a vector spin-flip efficiency of 94.
View Article and Find Full Text PDF