Along with the adoption of 5G, the development of neutral host solutions provides a unique opportunity for mobile networks operators to accommodate the needs of emerging use-cases and in the consolidation of new business models. By exploiting the concept of network slicing, as one key enabler in the transition to 5G, infrastructure and service providers can logically split a shared physical network into multiple isolated and customized networks to flexibly address the specific demands of those tenant slices. Motivated by this reality, the H2020 5GCity project proposed a novel 5G-enabled neutral host framework for three European cities: Barcelona (ESP), Bristol (UK), and Lucca (IT).
View Article and Find Full Text PDFThe management of wavelength routed optical mesh networks is complex with many potential light path routes and numerous physical layer impairments to transmission performance. This complexity can be reduced by applying the ideas of abstraction from computer science where different equipment is described in the same basic terms. The noise-to-signal ratio can be used as a metric to describe the quality of transmission performance of a signal propagated through a network element and accumulates additively through a sequence of such elements allowing the estimation of end-to-end performance.
View Article and Find Full Text PDFThe current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks.
View Article and Find Full Text PDFWe present results from the first demonstration of a fully integrated SDN-controlled bandwidth-flexible and programmable SDM optical network utilizing sliceable self-homodyne spatial superchannels to support dynamic bandwidth and QoT provisioning, infrastructure slicing and isolation. Results show that SDN is a suitable control plane solution for the high-capacity flexible SDM network. It is able to provision end-to-end bandwidth and QoT requests according to user requirements, considering the unique characteristics of the underlying SDM infrastructure.
View Article and Find Full Text PDFWe present the first elastic, space division multiplexing, and multi-granular network based on two 7-core MCF links and four programmable optical nodes able to switch traffic utilising the space, frequency and time dimensions with over 6000-fold bandwidth granularity. Results show good end-to-end performance on all channels with power penalties between 0.75 dB and 3.
View Article and Find Full Text PDF