Food-grade titanium dioxide (E171) is widely used in food, feed, and pharmaceuticals for its opacifying and coloring properties. This study investigates the formation of reactive oxygen species (ROS) and the aggregation behavior of E171 using the TNO Gastrointestinal (GI) model, which simulates the stomach and small intestine. E171 was characterized using multiple techniques, including electron spin resonance spectroscopy, single-particle inductively coupled plasma-mass spectrometry, transmission electron microscopy, and dynamic light scattering.
View Article and Find Full Text PDFRecently, PFASs toxicity for the human immune system has become a growing concern. However, there is currently limited information on PFASs immunotoxicity beyond PFHxS, PFOA, PFOS, and PFNA. Therefore, it is urgent to close the present knowledge gap by testing a wider range of compounds.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
July 2024
As a result of the European Single Use Plastic Directive and as part of the transition to a circular economy, plastic food contact materials (FCMs) are being replaced, often by renewable plant-based materials. This research aimed to identify which chemical substances are present in plant-based materials. In 2022 a total of 28 samples of the latter materials from the Dutch market were analysed for 313 active substances from plant protection products, 47 per- and polyfluoralkyl substances (PFASs) and 27 heavy metals and other elements.
View Article and Find Full Text PDFAnimal-based measures (ABMs) are the preferred way to assess animal welfare. However, manual scoring of ABMs is very time-consuming during the meat inspection. Automatic scoring by using sensor technology and artificial intelligence (AI) may bring a solution.
View Article and Find Full Text PDFTetrodotoxin (TTX) potently inhibits TTX-sensitive voltage-gated sodium (Na) channels in nerve and muscle cells, potentially resulting in depressed neurotransmission, paralysis and death from respiratory failure. Since a wide range of pharmaceutical drugs is known to also act on Na channels, the use of medicines could predispose individuals to a higher susceptibility towards TTX toxicity. We therefore first assessed the inhibitory effect of selected medicines that act on TTX-sensitive (Riluzole, Chloroquine, Fluoxetine, Valproic acid, Lamotrigine, Lidocaine) and TTX-resistant (Carbamazepine, Mexiletine, Flecainide) Na channels on spontaneous neuronal activity of rat primary cortical cultures grown on microelectrode arrays (MEA).
View Article and Find Full Text PDF