Background: Skin wound healing is a complex mechanism which requires a lot of energy, mainly provided by mitochondrial respiration. However, little is known about the mitochondrial bioenergetics of mice skin. We sought to develop a microplate-based assay to directly measure oxygen consumption in whole mice skin with the goal of identifying mitochondrial dysfunction in diabetic skin using an extracellular flux.
View Article and Find Full Text PDFBackground: Diabetic foot ulcers (DFUs) are a common complication of diabetes, associated with important morbidity. Appropriate animal models of DFUs may improve drug development, and subsequently the success rate of clinical trials. However, while many models have been proposed, they are extremely heterogeneous, and no standard has emerged.
View Article and Find Full Text PDFThe disturbance of intercellular communication is one of the hallmarks of aging. The goal of this study is to clarify the impact of chronological aging on extracellular vesicles (EVs), a key mode of communication in mammalian tissues. We focused on epidermal keratinocytes, the main cells of the outer protective layer of the skin which is strongly impaired in the skin of elderly.
View Article and Find Full Text PDFIntroduction: Elastic skin fibers lose their mechanical properties during aging due to enzymatic degradation, lack of maturation, or posttranslational modifications. Dill extract has been observed to increase elastin protein expression and maturation in a 3D skin model, to improve mechanical properties of the skin, to increase elastin protein expression in vascular smooth muscle cells, to preserve aortic elastic lamella, and to prevent glycation.
Objective: The aim of the study was to highlight dill actions on elastin fibers during aging thanks to elastase digestion model and the underlying mechanism.