Publications by authors named "D Sezen"

Introduction: Effective infiltration of chimeric antigen receptor T (CAR-T) cells into solid tumors is critical for achieving a robust antitumor response and improving therapeutic outcomes. While CAR-T cell therapies have succeeded in hematologic malignancies, their efficacy in solid tumors remains limited due to poor tumor penetration and an immunosuppressive tumor microenvironment. This study aimed to evaluate the potential of low-dose radiotherapy (LDRT) administered before T-cell therapy to enhance the antitumor effect by promoting CAR-T cell infiltration.

View Article and Find Full Text PDF

Background/objectives: The objective of this study was to assess the connection between the systemic inflammation response index (SIRI) values and failure patterns of patients with IDH wild-type glioblastoma (GB) who underwent radiotherapy (RT) with FLAIR-based gross tumor volume (GTV) delineation.

Methods: Seventy-one patients who received RT at a dose of 60 Gy to the GTV and 50 Gy to the clinical target volume (CTV) and had documented recurrence were retrospectively analyzed. Each patient's maximum distance of recurrence (MDR) from the GTV was documented in whichever plane it extended the farthest.

View Article and Find Full Text PDF

Background: Combining interleukin-2 (IL-2) with radiotherapy (RT) and immune checkpoint blockade (ICB) has emerged as a promising approach to address ICB resistance. However, conventional IL-2 cytokine therapy faces constraints owing to its brief half-life and adverse effects. RDB 1462, the mouse ortholog of Nemvaleukin alfa, is an engineered IL-2 with an intermediate affinity that selectively stimulates antitumor CD8 T and NK cells while limiting regulatory T cell expansion.

View Article and Find Full Text PDF

Background: The combination of radiotherapy and immunotherapy (immunoradiotherapy) has been increasingly used for treating a wide range of cancers. However, some tumors are resistant to immunoradiotherapy. We have previously shown that MER proto-oncogene tyrosine kinase (MerTK) expressed on macrophages mediates resistance to immunoradiotherapy.

View Article and Find Full Text PDF