Intracellular vesicles are typically transported by a small number of kinesin and dynein motors. However, the slow microtubule binding rate of kinesin-1 observed in biophysical studies suggests that long-range transport may require a high number of motors. To address the discrepancy in motor requirements between and studies, we reconstituted motility of 120-nm-diameter liposomes driven by multiple GFP-labeled kinesin-1 motors.
View Article and Find Full Text PDFThe nonphysiological nutrient levels found in traditional culture media have been shown to affect numerous aspects of cancer cell physiology, including how cells respond to certain therapeutic agents. Here, we comprehensively evaluated how physiological nutrient levels affect therapeutic response by performing drug screening in human plasma-like medium. We observed dramatic nutrient-dependent changes in sensitivity to a variety of FDA-approved and clinically trialed compounds, including rigosertib, an experimental cancer therapeutic that recently failed in phase III clinical trials.
View Article and Find Full Text PDFActin capping protein (CP) can be regulated by steric and allosteric mechanisms. The molecular mechanism of the allosteric regulation at a biophysical level includes linkage between the binding sites for three ligands: F-actin, Capping-Protein-Interacting (CPI) motifs, and V-1/myotrophin, based on biochemical functional studies and solvent accessibility experiments. Here, we investigated the mechanism of allosteric regulation at the atomic level using single-molecule Förster resonance energy transfer (FRET) and molecular dynamics (MD) to assess the conformational and structural dynamics of CP in response to linked-binding site ligands.
View Article and Find Full Text PDFThe non-physiological nutrient levels found in traditional culture media have been shown to affect numerous aspects of cancer cell physiology, including how cells respond to certain therapeutic agents. Here, we comprehensively evaluated how physiological nutrient levels impact therapeutic response by performing drug screening in human plasma-like medium (HPLM). We observed dramatic nutrient-dependent changes in sensitivity to a variety of FDA-approved and clinically trialed compounds, including rigosertib, an experimental cancer therapeutic that has recently failed in phase 3 clinical trials.
View Article and Find Full Text PDF