Publications by authors named "D Sepac"

To understand the origin of high enantioselectivity of Burkholderia cepacia lipase (BCL) toward secondary alcohol, (R,S)-1-phenoxy-2-hydroxybutane (1), and its ester (E1), we determined the crystal structure of BCL complexed with phosphonate analogue of S-E1 and accomplished a series of MM, MC, and QM/MM studies. We have found that the inhibitor in the S configuration binds into the BCL active site in the same manner as the R isomer, with an important difference: while in case of the R-inhibitor the H-bond between its alcohol oxygen and catalytic His286 can be formed, in the case of the S-inhibitor this is not possible. Molecular modeling for both E1 enantiomers revealed orientations in which all hydrogen bonds characteristic of productive binding are formed.

View Article and Find Full Text PDF

In a series of four racemic phenoxyalkyl-alkyl carbinols, 1-phenoxy-2-hydroxybutane (1) is enantioselectively acetylated by Burkholderia cepacia (formerly Pseudomonas cepacia) lipase with an E value > or = 200, whereas for the other three racemates E was found to be < or = 4. To explain the high preference of B. cepacia lipase for (R)-(+)-1, a precursor of its transition state analogue with a tetrahedral P-atom, (R(P),S(P))-O-(2R)-(1-phenoxybut-2-yl)methylphosphonic acid chloride was prepared and crystallized in complex with B.

View Article and Find Full Text PDF