mGlu2/3 Receptors (LY354740) in Anxiety mGlu2/3 receptors when activated decrease glutamate excitation on limbic synapses involved in anxiety. The orally active agonist compound LY354740 (or prodrug LY544344) was active in animal and human models of stress/anxiety. Later clinical studies showed efficacy in generalized anxiety in patients, validating this mechanism clinically.
View Article and Find Full Text PDFProg Brain Res
October 2021
Layer V pyramidal neurons constitute principle output neurons of the medial prefrontal cortex (mPFC)/neocortex to subcortical regions including the intralaminar/midline thalamic nuclei, amygdala, basal ganglia, brainstem nuclei and the spinal cord. The effects of 5-hydroxytryptamine (5-HT) on layer V pyramidal cells primarily reflect a range of excitatory influences through 5-HT receptors and inhibitory influences through non-5-HT receptors, including 5-HT receptors. While the 5-HT receptor is primarily a postsynaptic receptor on throughout the apical dendritic field of 5-HT receptors, activation of a minority of 5-HT receptors also appears to increase spontaneous excitatory postsynaptic currents/potentials (EPSCs/EPSPs) via a presynaptic effect on thalamocortical terminals arising from the midline and intralaminar thalamic nuclei.
View Article and Find Full Text PDFKetamine is a rapidly acting antidepressant in patients with treatment-resistant depression (TRD). Although the mechanisms underlying these effects are not fully established, inquiry to date has focused on the triggering of synaptogenesis transduction pathways via glutamatergic mechanisms. Preclinical data suggest that blockade of metabotropic glutamate (mGlu2/3) receptors shares many overlapping features and mechanisms with ketamine and may also provide rapid efficacy for TRD patients.
View Article and Find Full Text PDFEpidemiological projections of the prevalence of Alzheimer's disease (AD) and related dementias, the rapidly expanding population over the age of 65, and the enormous societal consequence on health, economics, and community foretell of a looming global public health crisis. Currently available treatments for AD are symptomatic, with modest effect sizes and limited impact on longer term disease outcomes. There have been no newly approved pharmaceutical treatments in the last decade, despite enormous efforts to develop disease-modifying treatments directed at Alzheimer's-associated pathology.
View Article and Find Full Text PDF