Publications by authors named "D Scheuner"

Tyrosine protein-kinase 2 (TYK2), a member of the Janus kinase family, mediates inflammatory signaling through multiple cytokines, including interferon-α (IFNα), interleukin (IL)-12, and IL-23. Missense mutations in TYK2 are associated with protection against type 1 diabetes (T1D), and inhibition of TYK2 shows promise in the management of other autoimmune conditions. Here, we evaluated the effects of specific TYK2 inhibitors (TYK2is) in pre-clinical models of T1D.

View Article and Find Full Text PDF

The metabolic inflammation (meta-inflammation) of obesity is characterized by proinflammatory macrophage infiltration into adipose tissue. Catalysis by deoxyhypusine synthase (DHPS) modifies the translation factor eIF5A to generate a hypusine (Hyp) residue. Hypusinated eIF5A (eIF5A) controls the translation of mRNAs involved in inflammation, but its role in meta-inflammation has not been elucidated.

View Article and Find Full Text PDF

Pancreatic β cells dedicate much of their protein translation capacity to producing insulin to maintain glucose homeostasis. In response to increased secretory demand, β cells can compensate by increasing insulin production capability even in the face of protracted peripheral insulin resistance. The ability to amplify insulin secretion in response to hyperglycemia is a critical facet of β-cell function, and the exact mechanisms by which this occurs have been studied for decades.

View Article and Find Full Text PDF

The protein hormone adiponectin regulates glucose and fatty acid metabolism by binding to two PAQR-family receptors (AdipoR1 and AdipoR2). Both receptors feature a C-terminal segment which is released by proteolysis to form a freely circulating C-terminal fragment (CTF) found in the plasma of normal individuals but not in some undefined diabetes patients. The AdipoR1-CTF is a competitive inhibitor of tumor necrosis factor α cleavage enzyme (TACE) but it contains a shorter peptide domain (AdipoR1 CTF) that is a strong non-competitive inhibitor of insulin-degrading enzyme (IDE).

View Article and Find Full Text PDF

Regulated proinsulin biosynthesis, disulfide bond formation and ER redox homeostasis are essential to prevent Type two diabetes. In ß cells, protein disulfide isomerase A1 (PDIA1/), the most abundant ER oxidoreductase of over 17 members, can interact with proinsulin to influence disulfide maturation. Here we find is required for optimal insulin production under metabolic stress in vivo.

View Article and Find Full Text PDF