Publications by authors named "D Sarenac"

The ability to perceive polarization-related entoptic phenomena arises from the dichroism of macular pigments held in Henle's fiber layer of the retina and can be inhibited by retinal diseases, such as age-related macular degeneration, which alters the structure of the macula. Structured light tools enable the direct probing of macular pigment density and retinal structure through the perception of polarization-dependent entoptic patterns. Here, we directly measure the visual angle of an entoptic pattern created through the illumination of the retina with a structured state of light and a perception task that is insensitive to corneal birefringence.

View Article and Find Full Text PDF

The dichroic macular pigment in the Henle fiber layer in the fovea enables humans to perceive entoptic phenomena when viewing polarized blue light. In the standard case of linearly polarized stimuli, a faint bowtie-like pattern known as the Haidinger's brush appears in the central point of fixation. As the shape and clarity of the perceived signal is directly related to the health of the macula, Haidinger's brush has been used as a diagnostic marker in studies of early stage macular degeneration and central field visual dysfunction.

View Article and Find Full Text PDF

Methods of preparation and analysis of structured waves of light, electrons, and atoms have been advancing rapidly. Despite the proven power of neutrons for material characterization and studies of fundamental physics, neutron science has not been able to fully integrate these techniques because of small transverse coherence lengths, the relatively poor resolution of spatial detectors, and low fluence rates. Here, we demonstrate methods that are practical with the existing technologies and show the experimental achievement of neutron helical wavefronts that carry well-defined orbital angular momentum values.

View Article and Find Full Text PDF

We tested the ability of human observers to discriminate distinct profiles of spatially dependant geometric phases when directly viewing stationary structured light beams. Participants viewed polarization coupled orbital angular momentum (OAM) states, or "spin-orbit" states, in which the OAM was induced through Pancharatnam-Berry phases. The coupling between polarization and OAM in these beams manifests as spatially dependant polarization.

View Article and Find Full Text PDF

Topologically nontrivial spin textures host great promise for future spintronic applications. Skyrmions in particular are of burgeoning interest owing to their nanometric size, topological protection, and high mobility via ultra-low current densities. It has been previously reported through magnetic susceptibility, microscopy, and scattering techniques that Co8Zn8Mn4 forms an above room temperature triangular skyrmion lattice.

View Article and Find Full Text PDF