The hydrologic benefits of catchment-scale implementation of stormwater control measures (SCMs) in mitigating the adverse effects of urbanization are well established. Nevertheless, recent studies indicate that the Unified Stormwater Sizing Criteria (USSC) regulations, mandating the combined use of distributed and storage stormwater controls, do not protect channel stability, despite their effectiveness in reducing runoff from impervious surfaces. The USSC are the basis of SCM design in 11 U.
View Article and Find Full Text PDFDue to the recent improved availability of global and regional climate change (CC) models and associated data, the projected impact of CC on urban stormwater management is well documented. However, most studies are based on simplified design storm analysis and unit-area runoff models; evaluations of the long-term, continuous hydrologic response of extensive stormwater control measures (SCM) implementation under future CC scenarios are limited. Moreover, channel stability in response to CC is seldom evaluated due to the input data required to develop a long-term, continuous sediment transport model.
View Article and Find Full Text PDFUrbanization changes land cover through the expansion of impermeable surfaces, leading to a significant rise in runoff, sediment, and nutrient loading. The quality of stormwater is related to land use and is highly variable. Currently, stormwater is predominantly described through watershed models that rely minimally, if at all, on field monitoring data.
View Article and Find Full Text PDFSunlight plays a key role in the nutrient cycle within streams. Streams are often piped to accommodate urban residential or commercial development for buildings, roads, and parking. This results in altered exposure to sunlight, air, and soil, subsequently affecting the growth of aquatic vegetation, reducing reaeration, and thus impairing the water quality and ecological health of streams.
View Article and Find Full Text PDFEstimating pollutant loads from developed watersheds is vitally important to reduce nonpoint source pollution from urban areas, as a key tool in meeting water quality goals is the implementation of Stormwater Control Measures (SCMs). SCMs are selected and sized based on influent pollutant loads. A common method used to estimate pollutant loads in urban runoff is the Event Mean Concentration (EMC) method.
View Article and Find Full Text PDF