Publications by authors named "D Salvert"

Evidence in humans suggests that limbic cortices are more active during rapid eye movement (REM or paradoxical) sleep than during waking, a phenomenon fitting with the presence of vivid dreaming during this state. In that context, it seemed essential to determine which populations of cortical neurons are activated during REM sleep. Our aim in the present study is to fill this gap by combining gene expression analysis, functional neuroanatomy, and neurochemical lesions in rats.

View Article and Find Full Text PDF

Recent reports support a key role of tuberal hypothalamic neurons secreting melanin concentrating-hormone (MCH) in the promotion of Paradoxical Sleep (PS). Controversies remain concerning their concomitant involvement in Slow-Wave Sleep (SWS). We studied the effects of their selective loss achieved by an Ataxin 3-mediated ablation strategy to decipher the contribution of MCH neurons to SWS and/or PS.

View Article and Find Full Text PDF

The recently discovered Nesfatin-1 plays a role in appetite regulation as a satiety factor through hypothalamic leptin-independent mechanisms. Nesfatin-1 is co-expressed with Melanin-Concentrating Hormone (MCH) in neurons from the tuberal hypothalamic area (THA) which are recruited during sleep states, especially paradoxical sleep (PS). To help decipher the contribution of this contingent of THA neurons to sleep regulatory mechanisms, we thus investigated in rats whether the co-factor Nesfatin-1 is also endowed with sleep-modulating properties.

View Article and Find Full Text PDF

Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by the loss of muscle atonia during paradoxical (REM) sleep (PS). Conversely, cataplexy, one of the key symptoms of narcolepsy, is a striking sudden episode of muscle weakness triggered by emotions during wakefulness, and comparable to REM sleep atonia. The neuronal dysfunctions responsible for RBD and cataplexy are not known.

View Article and Find Full Text PDF

Formerly believed to contribute to behavioural waking (W) alone, dopaminergic (DA) neurons are now also known to participate in the regulation of paradoxical sleep (PS or REM) in mammals. Indeed, stimulation of postsynaptic DA1 receptors with agonists induces a reduction in the daily amount of PS. DA neurons in the ventral tegmental area were recently shown to fire in bursts during PS, but nothing is known about the activity of the other DA cell groups in relation to waking or PS.

View Article and Find Full Text PDF