A new strategy to elaborate (1-3) type multiferroic nanocomposites with controlled dimensions and vertical alignment is presented. The process involves a supported nanoporous alumina layer as a template for growth of free-standing and vertically aligned CoFe nanopillars using a room temperature pulsed electrodeposition process. BaSrTiO-CoFeO multiferroic nanocomposites were grown through direct deposition of BaSrTiO films by radio-frequency sputtering on the top surface of the pillar structure, with in situ simultaneous oxidation of CoFe nanopillars.
View Article and Find Full Text PDFSealed-tube synthesis of BiMn2O5 materials and their physical properties have rationally been reinvestigated depending on the reactants. The aim of the study was to characterize its potential multiferroic properties and to investigate the anomalous magnetic properties in relation to the expected ferroelectric properties. Rietveld refinement of the room temperature X-ray diffraction data shows the stability of the crystallographic structure with a Mn(3+)/Mn(4+) ratio far from 1 because of bismuth and oxygen deficiencies despite the sealed-tube synthesis.
View Article and Find Full Text PDF