Progress in nanotechnology has determined new strategies concerning drug delivery into the central nervous system for the treatment of degenerative and inflammatory diseases. To date, brain targeting through systemic drug administration, even in a nano-composition, is often unsuccessful. Therefore, we investigated the possibility of loading T lymphocytes with PGLA-PEG COOH magnetite nanoparticles (30 nm), which can be built up to easily bind drugs and monoclonal antibodies, and to exploit the ability of activated T cells to cross the blood-brain barrier and infiltrate the brain parenchyma.
View Article and Find Full Text PDFThe role of salinity in the ecophysiology of many intertidal invertebrates has been extensively investigated. Calcium (Ca(2+)), magnesium (Mg(2+)), potassium (K(+)) and sodium (Na(+)) are the major constituents of seawater and it has been demonstrated that sandhoppers tested under the sun in diluted seawater (3.5 per thousand) head seaward, instead of going landward as expected.
View Article and Find Full Text PDF