Purpose Low residual noise (RN) levels are critically important when obtaining electrophysiological recordings of threshold auditory brainstem responses. In this study, we examine the effectiveness and efficiency of Kalman-weighted averaging (KWA) implemented on the Vivosonic Integrity System and artifact rejection (AR) implemented on the Intelligent Hearing Systems SmartEP system for obtaining low RN levels. Method Sixteen adults participated.
View Article and Find Full Text PDFPurpose: The auditory brainstem response (ABR) is a powerful tool for making clinical decisions about the presence, degree, and type of hearing loss in individuals in whom behavioral hearing thresholds cannot be obtained or are not reliable. Although the test is objective, interpretation of the results is subjective.
Method: This review provides information about evidence-based criteria, suggested by the 2013 Newborn Hearing Screening Program guidelines, and the use of cross-check methods for making valid interpretations about hearing status from ABR recordings.
Background: The auditory brainstem response (ABR) is used to estimate behavioral hearing thresholds in infants and difficult-to-test populations. Differences between the toneburst ABR and behavioral thresholds exist making the correspondence between the two measures less than perfect. Some authors have suggested that corrections be applied to ABR thresholds to account for these differences.
View Article and Find Full Text PDFDistortion product otoacoustic emissions (DPOAEs) and distortion product frequency following responses (DPFFRs) are respectively pre-neural and neural measurements associated with cochlear nonlinearity. Because cochlear nonlinearity is putatively linked to outer hair cell electromotility, DPOAEs and DPFFRs may provide complementary measurements of the human medial olivocochlear (MOC) reflex, which directly modulates outer hair cell function. In this study, we first quantified MOC reflex-induced DPOAE inhibition at spectral fine structure peaks in 22 young human adults with normal hearing.
View Article and Find Full Text PDF