Publications by authors named "D S Shewach"

Human ribonucleotide reductase (hRR) is crucial for DNA replication and maintenance of a balanced dNTP pool, and is an established cancer target. Nucleoside analogs such as gemcitabine diphosphate and clofarabine nucleotides target the large subunit (hRRM1) of hRR. These drugs have a poor therapeutic index due to toxicity caused by additional effects, including DNA chain termination.

View Article and Find Full Text PDF

DNA damage response has been characterized as an important mediator of senescence phenotypes induced by activated oncogenes in normal human cells. Depletion of intracellular deoxyribonucleotide pools has been recently recognized as one of the major causes for DNA damage in these cells. Cells undergoing oncogene-induced senescence display decreased expression of several rate-limiting enzymes involved in the biosynthesis of deoxyribonucleotides, including thymidylate synthase (TS) and ribonucleotide reductase (RR).

View Article and Find Full Text PDF

Gemcitabine (dFdCyd) shows broad antitumor activity in solid tumors in chemotherapeutic regimens or when combined with ionizing radiation (radiosensitization). While it is known that mismatches in DNA are necessary for dFdCyd radiosensitization, the critical event resulting in radiosensitization has not been identified. Here we hypothesized that late DNA damage (≥24 h after drug washout/irradiation) is a causal event in radiosensitization by dFdCyd, and that homologous recombination repair (HRR) is required for this late DNA damage.

View Article and Find Full Text PDF

Melanoma progression is associated with increased invasion and, often, decreased levels of microphthalmia-associated transcription factor (MITF). Accordingly, downregulation of MITF induces invasion in melanoma cells; however, little is known about the underlying mechanisms. Here, we report for the first time that depletion of MITF results in elevation of intracellular GTP levels and increased amounts of active (GTP-bound) RAC1, RHO-A and RHO-C.

View Article and Find Full Text PDF

Chromosomal instability in early cancer stages is caused by replication stress. One mechanism by which oncogene expression induces replication stress is to drive cell proliferation with insufficient nucleotide levels. Cancer development is driven by alterations in both genetic and environmental factors.

View Article and Find Full Text PDF