It is currently impossible to perform an evidence-based risk assessment for medication use during breastfeeding. The ConcePTION project aims to provide information about the use of medicines during lactation. The study aimed to develop and characterize an in vitro model of the blood-milk barrier to determine the extent of the milk transfer of xenobiotics, relying on either on human mammary epithelial cells (hMECs) or immortalized cell lines derived from breast tissue.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
December 2024
Mammary epithelial cells (MECs) of humans (h) and Göttingen Minipigs (mp) were analyzed to compare their ability to perform ATP production by oxidative phosphorylation and glycolysis. The ATP production under basal and stressor situations highlights the same metabolic potential of both primary cell lines. However, quantitively the ATP production rate of hMECs was higher than mpMECs.
View Article and Find Full Text PDFThe value of pig as "large animal model" is a well-known tool for translational medicine, but it can also be beneficial in studying animal health in a one-health vision. The ConcePTION Project aims to provide new information about the risks associated with medication use during breastfeeding, as this information is not available for most commonly used drugs. In the IMI-Conception context, Göttingen Minipigs have been preferred to hybrid pigs for their genetic stability and microbiological control.
View Article and Find Full Text PDFA major feature of epithelial and endothelial cells is the creation of biological barriers able to protect the body against stressors that could compromise homeostasis. The ability to characterize biological barriers in vitro is an important study tool especially used for the intestinal barrier, the blood-brain barrier, and the lung barrier. The strength and integrity of biological barriers may be assessed by the measurement of the transepithelial/transendothelial electrical resistance (TEER) that reflects the ionic conductance of the paracellular pathway.
View Article and Find Full Text PDFTwo main classes of perivascular multipotent populations have been described: the microvascular pericytes and the vascular wall mesenchymal stem cells (VW-MSCs). VW-MSCs are isolated from large vessels in many species and they participate in vascular remodeling together with other cellular components such as endothelial cells. Considering that the Göttingen Minipigs are widely used in Europe as a translational model in the field of cardiovascular diseases, the aim of the present research was to isolate VW-MSCs from the adult aorta of Göttingen Minipigs while preserving and also collecting endothelial cells.
View Article and Find Full Text PDF