Publications by authors named "D S Kostyushev"

Article Synopsis
  • Hyperthermia enhances cancer treatment by raising cell temperatures to induce damage, often combined with other therapies, making temperature regulation essential.
  • The study presents a straightforward method for creating hybrid plasmonic nanodiamonds coated with either an Au shell or Au nanoparticles, which improves both heating and nanoscale temperature measurement.
  • These hybrid nanodiamonds effectively generate heat when exposed to light, proving useful in local photothermal therapy for melanoma by successfully eliminating cancer cells while monitoring temperature throughout the process.
View Article and Find Full Text PDF

Gene therapies hold significant promise for treating previously incurable diseases. A number of gene therapies have already been approved for clinical use. Currently, gene therapies are mostly limited to the use of adeno-associated viruses and the herpes virus.

View Article and Find Full Text PDF

The demand for RNA-based therapeutics is increasing globally. However, their use is hampered by the lack of safe and effective delivery vehicles. Here, we developed technologies for highly efficient delivery of RNA cargo into programmable extracellular vesicle-mimetic nanovesicles (EMNVs) by fabricating hybrid EMNV-liposomes (Hybs).

View Article and Find Full Text PDF

Biomimetic nanoparticles (BMNPs) are innovative nanovehicles that replicate the properties of naturally occurring extracellular vesicles, facilitating highly efficient drug delivery across biological barriers to target organs and tissues while ensuring maximal biocompatibility and minimal-to-no toxicity. BMNPs can be utilized for the delivery of therapeutic payloads and for imparting novel properties to other nanotechnologies based on organic and inorganic materials. The application of specifically modified biological membranes for coating organic and inorganic nanoparticles has the potential to enhance their therapeutic efficacy and biocompatibility, presenting a promising pathway for the advancement of drug delivery technologies.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are natural carriers of biomolecules that play a crucial role in cell-to-cell communication and tissue homeostasis under normal and pathological conditions, including inflammatory diseases and cancer. Since the discovery of the pro-regenerative and immune-modulating properties of EVs, EV-based therapeutics have entered clinical trials for conditions such as myocardial infarction and autoimmune diseases, among others. Due to their unique advantages-such as superior bioavailability, substantial packaging capacity, and the ability to traverse biological barriers-EVs are regarded as a promising platform for targeted drug delivery.

View Article and Find Full Text PDF