Publications by authors named "D S Kopein"

The article presents the results of studies of the drug Tigerase® (inhalation solution manufactured by JSC GENERIUM, Russia), conducted to obtain evidence of its similarity (comparability) to the reference drug Pulmozyme® (inhalation solution, manufactured by Hoffmann-La Roche Ltd., Switzerland). Both drugs contain human recombinant deoxyribonuclease I (dornase alfa) as an active substance and are intended for the treatment of cystic fibrosis with pulmonary manifestations (mucoviscidosis).

View Article and Find Full Text PDF

Drosophila genome encodes six alpha-subunits of heterotrimeric G proteins. The Galphas alpha-subunit is involved in the post-eclosion wing maturation, which consists of the epithelial-mesenchymal transition and cell death, accompanied by unfolding of the pupal wing into the firm adult flight organ. Here we show that another alpha-subunit Galphao can specifically antagonize the Galphas activities by competing for the Gbeta13F/Ggamma1 subunits of the heterotrimeric Gs protein complex.

View Article and Find Full Text PDF

[(35)S]GTPgammaS, the nonhydrolyzable radioactive GTP analog, has been a powerful tool in G protein studies and has set the standards in this field of research. However, its radioactive nature imposes clear limitations to its use in regular laboratory practice and in high-throughput experimentation. The europium-labeled GTP analog (Eu-GTP) has been used as an alternative in the analysis of G protein activation by G protein-coupled receptors in cellular membrane preparations.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) transduce their signals through trimeric G proteins, inducing guanine nucleotide exchange on their Galpha-subunits; the resulting Galpha-GTP transmits the signal further inside the cell. GoLoco domains present in many proteins play important roles in multiple trimeric G protein-dependent activities, physically binding Galpha-subunits of the Galpha(i/o) class. In most cases GoLoco binds exclusively to the GDP-loaded form of the Galpha-subunits.

View Article and Find Full Text PDF

We have developed a simple isothermal (55 degrees C) reaction that permits detection of DNA targets using only two components: a molecular beacon and a site-specific DNA nickase without deoxyribonucleotide triphosphates and primers. The loop sequence of the molecular beacon should contain a DNA nickase recognition site. The nickase-molecular beacon (NMB) combination permits a 100-fold increase in fluorescent signal.

View Article and Find Full Text PDF