Background: Navigation surgical systems have been widely used in spinal fusion to ensure accuracy and safety during pedicle screw insertion.
Methods: The research was performed under laboratory conditions, using stereotactic navigation, surgical instruments for spinal fusion, development of additional devices and software. During the experiments, all stages of the computed tomography-guided navigation system use were performed-preoperative preparation of patient data and planning to provide visual control of the navigation of surgical instruments during the insertion of screws.
In order to control pathogenic microorganisms, three polymer compositions were prepared and tested. First, a water-soluble positively charged polycomplex was synthesized via the electrostatic binding of anionic polyacrylic acid to an excess of polyethylenimine to enhance the biocidal activity of the polycation. Second, an aqueous solution of AgNO was added to the polycomplex, thus forming a ternary polycation-polyanion-Ag complex with an additional antimicrobial effect.
View Article and Find Full Text PDFSeveral small molecule inhibitors have been designed to block binding of the Venezuelan equine encephalitis virus (VEEV) nuclear localization signal (NLS) sequence to the importin-α nuclear transport protein. To probe the inhibition mechanism on a molecular level, we used all-atom explicit water replica exchange molecular dynamics to study the binding of two inhibitors, I1 and I2, to the coreNLS peptide, representing the core fragment of the VEEV NLS sequence. Our objective was to evaluate the possibility of masking wherein binding of these inhibitors to the coreNLS occurs prior to its binding to importin-α.
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
July 2024