Publications by authors named "D S Kim"

Breath biopsy is emerging as a rapid and non-invasive diagnostic tool that links exhaled chemical signatures with specific medical conditions. Despite its potential, clinical translation remains limited by the challenge of reliably detecting endogenous, disease-specific biomarkers in breath. Synthetic biomarkers represent an emerging paradigm for precision diagnostics such that they amplify activity-based biochemical signals associated with disease fingerprints.

View Article and Find Full Text PDF

Unlabelled: Bacterial sRNAs together with the RNA chaperone Hfq post-transcriptionally regulate gene expression by affecting ribosome binding or mRNA stability. In the human pathogen , the causative agent of whooping cough, hundreds of sRNAs have been identified, but their roles in biology are mostly unknown. Here we characterize a Hfq-dependent sRNA (S17), whose level is dramatically higher in the virulence (Bvg ) mode.

View Article and Find Full Text PDF

Purpose: This pilot study investigated the effect of surface roughness on osseointegration by comparing two types of commercial SLA-treated dental implants with different surface roughness levels: moderately rough (S = 1 - 2 µm) and rough surfaces (S > 2 µm).

Materials And Methods: Two implant groups were studied: TS (rough surface) and ADD (moderately rough surface) groups. Surface characteristics were analyzed using optical profilometry and SEM.

View Article and Find Full Text PDF

Background: Despite decades of post-allogeneic hematopoietic cell transplantation (HCT) growth factor utilization, its role remains undefined, leading to ongoing debates and research. The theoretical impacts of growth factors have been challenged in numerous studies.

Methods: In this retrospective cohort study conducted at the Princess Margaret Cancer Centre, we analyzed the clinical outcomes of 509 patients who underwent allogeneic HCT between May 1, 2019, and May 31, 2022.

View Article and Find Full Text PDF

This study presents a novel in vitro bilayer 3D co-culture platform designed to obtain cancer-associated fibroblasts (CAFs)-like cells. The platform consists of a bilayer hydrogel structure with a collagen/polyethylene glycol (PEG) hydrogel for fibroblasts as the upper layer and an alginate hydrogel for tumor cells as the lower layer. The platform enabled paracrine interactions between fibroblasts and cancer cells, which allowed for selective retrieval of activated fibroblasts through collagenase treatment for further study.

View Article and Find Full Text PDF