We show here that mitochondria-targeted antioxidant composed of plastoquinone conjugated through hydrocarbon linker with cationic rhodamine 19 (SkQR1) protected against nuclear DNA damage induced by gamma radiation in K562 erythroleukemia cells. We also demonstrate that SkQR1 prevented the early (1 h postirradiation) accumulation of phosphorylated histone H2AX (γ-H2AX) an indicator of DNA double-strand break formation, as well as the radiation-induced increase in chromosomal aberrations. These data suggested that nuclear DNA damage induced by gamma radiation may be mediated by mitochondrial reactive oxygen species (ROS) production.
View Article and Find Full Text PDFRadioprotection appeared to be an important problem of today due to atom energetic development and utilization of radiation material in the industry, science and medicine. It has been shown that mitochondrial targeted antioxidant SkQR1 could attenuate radiation injury of human erythroleukemia K562 cells. Pretreatment with SkQR1 before irradiation decreased DNA double strand breaks formation, diminished the number of chromosomal aberrations and suppressed delayed ROS production.
View Article and Find Full Text PDF