Publications by authors named "D S Everdeen"

The integral membrane enzyme fatty acid amide hydrolase (FAAH) hydrolyzes the endocannabinoid anandamide and related amidated signaling lipids. Genetic or pharmacological inactivation of FAAH produces analgesic, anxiolytic, and antiinflammatory phenotypes but not the undesirable side effects of direct cannabinoid receptor agonists, indicating that FAAH may be a promising therapeutic target. Structure-based inhibitor design has, however, been hampered by difficulties in expressing the human FAAH enzyme.

View Article and Find Full Text PDF

Eukaryotic mRNAs are modified at the 5' end with a cap structure. In fungal cells, the formation of the mRNA cap structure is catalyzed by three enzymes: triphosphatase, guanylyltransferase, and methyltransferase. Fungal capping enzymes have been proposed to be good antifungal targets because they differ significantly from their human counterparts and the genes encoding these enzymes are essential in Saccharomyces cerevisiae.

View Article and Find Full Text PDF

Signaling by some TNF receptor family members, including CD40, is mediated by TNF receptor-associated factors (TRAFs) that interact with receptor cytoplasmic domains following ligand-induced receptor oligomerization. Here we have defined the oligomeric structure of recombinant TRAF domains that directly interact with CD40 and quantitated the affinities of TRAF2 and TRAF3 for CD40. Biochemical and biophysical analyses demonstrated that TRAF domains of TRAF1, TRAF2, TRAF3, and TRAF6 formed homo-trimers in solution.

View Article and Find Full Text PDF

CD40 is a TNF receptor superfamily member that provides activation signals in antigen-presenting cells such as B cells, macrophages, and dendritic cells. Multimerization of CD40 by its ligand initiates signaling by recruiting TNF receptor-associated factors (TRAFs) to the CD40 cytoplasmic domain. Recombinant human TRAF proteins overexpressed in insect cells were biochemically characterized and used to finely map TRAF binding regions in the human CD40 cytoplasmic domain.

View Article and Find Full Text PDF

A hybrid protein (H144), consisting of Lac repressor and T7 endonuclease I, binds at the lac operator and cleaves relaxed double-stranded DNA at distal but distinct sites. These sites are shown here to coincide with a bacterial promoter, a phage T7 promoter, a site for gyrase and intrinsically bent DNA. The targets do not seem to share a particular DNA sequence, and in bent DNA, cleavage occurs at the physical center rather than at the common A-tracts.

View Article and Find Full Text PDF