Robust coordination of surface and volume changes is critical for cell integrity. Few studies have elucidated the plasma membrane (PM) remodeling events during cell surface and volume alteration, especially regarding PM sensing and its subsequent rearrangements. Here, using fission yeast protoplasts, we reveal a Ca-dependent mechanism for membrane addition that ensures PM integrity and allows its expansion during acute hypoosmotic cell swelling.
View Article and Find Full Text PDFPolarized exocytosis induced by local Cdc42 GTPase activity results in membrane flows that deplete low-mobility membrane-associated proteins. A reaction-diffusion particle model comprising Cdc42 positive feedback activation, hydrolysis by GTPase-activating proteins (GAPs), and flow-induced displacement by exo/endocytosis shows that flow-induced depletion of low mobility GAPs promotes polarization. We modified Cdc42 mobility in Schizosaccharomyces pombe by replacing its prenylation site with 1, 2 or 3 repeats of the Rit C-terminal membrane-binding domain (ritC), yielding alleles with progressively lower mobility and increased flow-coupling.
View Article and Find Full Text PDFClass I myosins (myosin-Is) colocalize with Arp2/3 complex-nucleated actin networks at sites of membrane protrusion and invagination, but the mechanisms by which myosin-I motor activity coordinates with branched actin assembly to generate force are unknown. We mimicked the interplay of these proteins using the "comet tail" bead motility assay, where branched actin networks are nucleated by the Arp2/3 complex on the surface of beads coated with myosin-I and nucleation-promoting factor. We observed that myosin-I increased bead movement efficiency by thinning actin networks without affecting growth rates.
View Article and Find Full Text PDFBackground: There is currently no staging system for cutaneous squamous cell carcinoma (cSCC) that is adapted to decision-making and universally used. Experts have unconscious ability to simplify the heterogeneity of clinical situations into a few relevant groups to drive their therapeutic decisions. Therefore, we have used unsupervised clustering of real cases by experts to generate an operational classification of cSCCs, an approach that was successful for basal cell carcinomas.
View Article and Find Full Text PDF