Publications by authors named "D Ruhstorfer"

Semiconductor nanowires (NWs) are promising candidates for use in electronic and optoelectronic applications, offering numerous advantages over their thin film counterparts. Their performance relies heavily on the quality of the contacts to the NW, which should exhibit ohmic behavior with low resistance and should be formed in a reproducible manner. In the case of heterostructure NWs for high-mobility applications that host a two-dimensional electron gas, ohmic contacts are particularly challenging to implement since the NW core constituting the conduction channel is away from the NW surface.

View Article and Find Full Text PDF

Mesoscopic superconductivity deals with various quasiparticle excitation modes, only one of them-the charge-mode-being directly accessible for conductance measurements due to the imbalance in populations of quasi-electron and quasihole excitation branches. Other modes carrying heat or even spin, valley etc. currents populate the branches equally and are charge-neutral, which makes them much harder to control.

View Article and Find Full Text PDF

We report a comprehensive study of the growth dynamics in highly periodic, composition tunable InAsSb nanowire (NW) arrays using catalyst-free selective area molecular beam epitaxy. Employing periodically patterned SiO-masks on Si (111) with various mask opening sizes (20-150 nm) and pitches (0.25-2 μm), high NW yield of >90% (irrespective of the InAsSb alloy composition) is realized by the creation of an As-terminated 1 × 1-Si(111) surface prior to NW nucleation.

View Article and Find Full Text PDF

Ultrathin InAs nanowires (NW) with a one-dimensional (1D) sub-band structure are promising materials for advanced quantum-electronic devices, where dimensions in the sub-30 nm diameter limit together with post-CMOS integration scenarios on Si are much desired. Here, we demonstrate two site-selective synthesis methods that achieve epitaxial, high aspect ratio InAs NWs on Si with ultrathin diameters below 20 nm. The first approach exploits direct vapor-solid growth to tune the NW diameter by interwire spacing, mask opening size and growth time.

View Article and Find Full Text PDF

We report a comprehensive study of the impact of the structural properties in radial GaAs-AlGaAs nanowire-quantum well heterostructures on the optical recombination dynamics and electrical transport properties, emphasizing particularly the role of the commonly observed variations of the quantum well thickness at different facets. Typical thickness fluctuations of the radial quantum well observed by transmission electron microscopy lead to pronounced localization. Our optical data exhibit clear spectral shifts and a multipeak structure of the emission for such asymmetric ring structures resulting from spatially separated, yet interconnected quantum well systems.

View Article and Find Full Text PDF