IEEE Trans Neural Syst Rehabil Eng
July 2023
Unlabelled: The aims of this study are to characterize the contamination of EMG signals by artifacts generated by the delivery of spinal cord transcutaneous stimulation (scTS) and to evaluate the performance of an Artifact Adaptive Ideal Filtering (AA-IF) technique to remove scTS artifacts from EMG signals.
Methods: In five participants with spinal cord injury (SCI), scTS was delivered at different combinations of intensity (from 20 to 55 mA) and frequencies (from 30 to 60 Hz) while Biceps Brachii (BB) and Triceps Brachii (TB) muscles were at rest or voluntarily activated. Using a Fast Fourier Transform (FFT), we characterized peak amplitude of scTS artifacts and boundaries of contaminated frequency bands in the EMG signals recorded from BB and TB muscles.
The aim of the study was to compare the Force-Velocity profiles of track sprint cyclists obtained in seated and non-seated positions. Athletes were tested on a stationary cycle ergometer for the seated position and on a racing bike at the velodrome for the non-seated position. We modelled torque and power vs.
View Article and Find Full Text PDFFront Sports Act Living
January 2022
To investigate how quadriceps muscle fatigue affects power production over the extension and flexion phases and muscle activation during maximal cycling. Ten participants performed 10-s maximal cycling efforts without fatigue and after 120 bilateral maximal concentric contractions of the quadriceps muscles. Extension power, flexion power and electromyographic (EMG) activity were compared between maximal cycling trials.
View Article and Find Full Text PDFVoluntary force declines during sustained, maximal voluntary contractions (MVC) due to changes in muscle and central nervous system properties. Central fatigue, an exercise-induced reduction in voluntary activation, is influenced by multiple processes. Some may occur independently of descending voluntary drive.
View Article and Find Full Text PDFIn vitro studies have shown that alterations in redox state can cause a range of opposing effects on the properties of the contractile apparatus in skeletal muscle fibers. To test whether and how redox changes occurring in vivo affect the contractile properties, vastus lateralis muscle fibers from seven healthy young adults were examined at rest (PRE) and following (POST) high-intensity intermittent cycling exercise. Individual mechanically skinned muscle fibers were exposed to heavily buffered solutions at progressively higher free [Ca] to determine their force-Ca relationship.
View Article and Find Full Text PDF