Different strains of a microorganism growing in the same environment display a wide variety of growth rates and growth yields. We developed a coarse-grained model to test the hypothesis that different resource allocation strategies, corresponding to different compositions of the proteome, can account for the observed rate-yield variability. The model predictions were verified by means of a database of hundreds of published rate-yield and uptake-secretion phenotypes of strains grown in standard laboratory conditions.
View Article and Find Full Text PDFWe investigated the scalability of a previously developed growth switch based on external control of RNA polymerase expression. Our results indicate that, in liter-scale bioreactors operating in fed-batch mode, growth-arrested cells are able to convert glucose to glycerol at an increased yield. A multiomics quantification of the physiology of the cells shows that, apart from acetate production, few metabolic side effects occur.
View Article and Find Full Text PDFMetabolic engineering strategies are crucial for the development of bacterial cell factories with improved performance. Until now, optimal metabolic networks have been designed based on systems biology approaches integrating large-scale data on the steady-state concentrations of mRNA, protein and metabolites, sometimes with dynamic data on fluxes, but rarely with any information on mRNA degradation. In this review, we compile growing evidence that mRNA degradation is a key regulatory level in E.
View Article and Find Full Text PDFIn living organisms, the same enzyme catalyses the degradation of thousands of different mRNAs, but the possible influence of competing substrates has been largely ignored so far. We develop a simple mechanistic model of the coupled degradation of all cell mRNAs using the total quasi-steady-state approximation of the Michaelis-Menten framework. Numerical simulations of the model using carefully chosen parameters and analyses of rate sensitivity coefficients show how substrate competition alters mRNA decay.
View Article and Find Full Text PDF