Catecholamines and glucocorticoids are involved in fetal maturation of organ systems to prepare the fetus for extrauterine life. Calves, especially when born preterm, depend on function of the adrenergic system and the glucocorticoid axis to adapt energy metabolism for the neonatal period. We tested the hypothesis that hepatic glucocorticoid and α1- and β2-adrenergic receptors in neonatal calves are involved in adaptation of energy metabolism around birth and that respective binding capacities depend on stage of maturation during the neonatal period.
View Article and Find Full Text PDFNeonatal energy metabolism in calves has to adapt to extrauterine life and depends on colostrum feeding. The adrenergic and glucocorticoid systems are involved in postnatal maturation of pathways related to energy metabolism and calves show elevated plasma concentrations of cortisol and catecholamines during perinatal life. We tested the hypothesis that hepatic glucocorticoid receptors (GR) and α₁- and β₂-adrenergic receptors (AR) in neonatal calves are involved in adaptation of postnatal energy metabolism and that respective binding capacities depend on colostrum feeding.
View Article and Find Full Text PDFJ Biomed Mater Res A
October 2013
The fixation of cementless endoprostheses requires excellent fixation at the bone implant interface. Although the surface structures of these implants are designed to promote osteoblastic differentiation, poor bone quality may prevent or delay osseointegration. There is evidence that RGD peptides known as recognition motifs for various integrins, promote cellular adhesion, influence cellular proliferation, and differentiation of local cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2012
Scaffold proteins form a framework to organize signal transduction by binding multiple partners within a signaling pathway. This shapes the output of signal responses as well as providing specificity and localization. The Membrane Associated Guanylate Kinases (MAGuKs) are scaffold proteins at cellular junctions that localize cell surface receptors and link them to downstream signaling enzymes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2012
In this study, we investigated the role for ancestral functional variation that may be selected upon to generate protein functional shifts using ancestral protein resurrection, statistical tests for positive selection, forward and reverse evolutionary genetics, and enzyme functional assays. Data are presented for three instances of protein functional change in the salicylic acid/benzoic acid/theobromine (SABATH) lineage of plant secondary metabolite-producing enzymes. In each case, we demonstrate that ancestral nonpreferred activities were improved upon in a daughter enzyme after gene duplication, and that these functional shifts were likely coincident with positive selection.
View Article and Find Full Text PDF