Influencing the starch postprandial glycemia via interventions that are sourced from natural plant materials has gained attention recently. Amylose present in starch is reported to form complexes with small ligands such as gallic acid (GA) through a conformational change that are digested slowly and contribute to the formation of resistant starch. In this study, the molecular interactions, multi-scale structure and in vitro digestion properties of normal neat rice starch and rice starch-GA composites (2, 5 % w/v) obtained either by high hydrostatic pressure (HHP) or thermal (T) treatment were compared.
View Article and Find Full Text PDFNucleoredoxin (NXN) is a prominent oxidoreductase enzyme, classified under the thioredoxin family, and plays a pivotal role in regulating cellular redox homeostasis. Although the functional characterization of NXN has been extensively studied in mammals, its role in fish remains relatively unexplored. In this study, the NXN gene from Planiliza haematocheilus (PhNXN) was molecularly and functionally characterized using in silico tools, expression analyses, and in vitro assays.
View Article and Find Full Text PDFPeroxiredoxin 5 (Prdx5) is the last recognized member of Prdx family. It is a unique, atypical, 2-Cys antioxidant enzyme, protecting cells from death caused by reactive oxygen species (ROS). In this study, the Prdx5 ortholog of Amphiprion clarkii (AcPrdx5) was identified and characterized to explore its specific structural features and functional properties.
View Article and Find Full Text PDFThe group represents a serious risk in powdered and amylaceous foodstuffs. Cold plasma (the fourth state of matter) is emerging as an alternative effective nonthermal technology for pasteurizing a wide range of matrices in solid, liquid, and powder form. The present study aims to evaluate the mechanisms involved in inactivation via cold plasma, focusing on (i) the technology's ability to generate damage in cells (at the morphological and molecular levels) and (ii) studying the effectiveness of cold plasma in biofilm mitigation through the direct effect and inhibition of the biofilm-forming capacity of sublethally damaged cells post-treatment.
View Article and Find Full Text PDF