Electronic states in quasicrystals generally preclude a Bloch description, rendering them fascinating and enigmatic. Owing to their complexity and scarcity, quasicrystals are underexplored relative to periodic and amorphous structures. Here we introduce a new type of highly tunable quasicrystal easily assembled from periodic components.
View Article and Find Full Text PDFMagic-angle twisted bilayer graphene (MATBG) has recently emerged as a highly tunable two-dimensional material platform exhibiting a wide range of phases, such as metal, insulator and superconductor states. Local electrostatic control over these phases may enable the creation of versatile quantum devices that were previously not achievable in other single-material platforms. Here we engineer Josephson junctions and tunnelling transistors in MATBG, solely defined by electrostatic gates.
View Article and Find Full Text PDFIn the 1950s, Pomeranchuk predicted that, counterintuitively, liquid He may solidify on heating. This effect arises owing to high excess nuclear spin entropy in the solid phase, where the atoms are spatially localized. Here we find that an analogous effect occurs in magic-angle twisted bilayer graphene.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDF