Background: Stimulated Raman histology (SRH) is a label-free optical imaging method for rapid intraoperative analysis of fresh tissue samples. Analysis of SRH images using Convolutional Neural Networks (CNN) has shown promising results for predicting the main histopathological classes of neurooncological tumors. Due to the relatively low number of rare tumor representations in CNN training datasets, a valid prediction of rarer entities remains limited.
View Article and Find Full Text PDFObjective: The purpose of this study was to evaluate the effectiveness of a deep learning model (DLM) in improving the sensitivity of neurosurgery residents to detect intracranial aneurysms on CT angiography (CTA) in patients with aneurysmal subarachnoid hemorrhage (aSAH).
Methods: In this diagnostic accuracy study, a set of 104 CTA scans of aSAH patients containing a total of 126 aneurysms were presented to three blinded neurosurgery residents (a first-year, third-year, and fifth-year resident), who individually assessed them for aneurysms. After the initial reading, the residents were given the predictions of a dedicated DLM previously established for automated detection and segmentation of intracranial aneurysms.
Purpose: Recent artificial intelligence algorithms aided intraoperative decision-making via stimulated Raman histology (SRH) during craniotomy. This study assesses deep learning algorithms for rapid intraoperative diagnosis from SRH images in small stereotactic-guided brain biopsies. It defines a minimum tissue sample size threshold to ensure diagnostic accuracy.
View Article and Find Full Text PDF