The pervasiveness of deep space radiation remains a confounding factor for the transit of humans through our solar system. Spacecraft shielding both protects astronauts but also contributes to absorbed dose through galactic cosmic ray interactions that produce secondary particles. The resultant biological effects drop to a minimum for aluminum shielding around 20 g/cm2 but increase with additional shielding.
View Article and Find Full Text PDFSignificant past work has identified unexpected risks of central nervous system (CNS) exposure to the space radiation environment, where long-lasting functional decrements have been associated with multiple ion species delivered at low doses and dose rates. As shielding is the only established intervention capable of limiting exposure to the dangerous radiation fields in space, the recent discovery that pions, emanating from regions of enhanced shielding, can contribute significantly to the total absorbed dose on a deep space mission poses additional concerns. As a prerequisite to biological studies evaluating pion dose equivalents for various CNS exposure scenarios of mice, a careful dosimetric validation study is required.
View Article and Find Full Text PDFThe COMPASS experiment at the CERN SPS has studied the diffractive dissociation of negative pions into the π- π- π+ final state using a 190 GeV/c pion beam hitting a lead target. A partial wave analysis has been performed on a sample of 420,000 events taken at values of the squared 4-momentum transfer t' between 0.1 and 1 GeV2/c2.
View Article and Find Full Text PDFThe first measurements of double-hadron production in deep-inelastic scattering within the nuclear medium were made with the HERMES spectrometer at DESY HERA using a 27.6 GeV positron beam. By comparing data for deuterium, nitrogen, krypton, and xenon nuclei, the influence of the nuclear medium on the ratio of double-hadron to single-hadron yields was investigated.
View Article and Find Full Text PDF