Publications by authors named "D Redoules"

Background: Overexposure to sunlight can have many harmful biological effects on the skin, leading to skin cancer and photoaging. As ultraviolet (UV) radiation has been identified as a cause of DNA damage and oxidative stress in the skin, the photoprotection provided by sunscreens is evaluated through their ability to filter UV light, using the sun protection factor (SPF). However, recent data have shown that high-energy visible (HEV) light can also cause biological skin damage.

View Article and Find Full Text PDF

Accumulating evidence from numerous comprehensive studies has demonstrated that blue light, in particular high-energy visible light, can exert a range of harmful effects on skin cells. These forms of radiation are now known to be able to trigger oxidation reactions, DNA damage, erythema and pigmentary changes, and may also be associated with photoaging. Sunscreens protecting the skin from only ultraviolet (UV)-B and UVA rays can therefore no longer be regarded as sufficient to help prevent skin damage from sunlight, and products containing filters that can provide broad-spectrum photoprotection are required.

View Article and Find Full Text PDF

Sunscreens must now be effective in protecting skin from ultraviolet, as well as visible/infrared radiation. Here, TriAsorB, a new broad-spectrum sun filter, was formulated with three other sunscreens and their distribution on human skin was studied using a standard penetration protocol and two novel mass spectrometry imaging techniques: atmospheric pressure matrix assisted laser desorption ionization (AP-MALDI) coupled to high resolution mass spectrometry and time of flight - secondary ion mass spectrometry (ToF-SIMS). The standard penetration protocol showed that sun filters absorption was very low, with most of the dose recovered at the surface (none entered the receptor fluid).

View Article and Find Full Text PDF

Background: Type-17 inflammation characterizes psoriasis, a chronic skin disease. Because several inflammatory cytokines contribute to psoriasis pathogenesis, inhibiting the simultaneous production of these cytokines in T17 cells may be beneficial in psoriasis. We found that Ca1.

View Article and Find Full Text PDF

Acne is a multifactorial disease driven by physiological changes occurring during puberty in the pilosebaceous unit (PSU) that leads to sebum overproduction and a dysbiosis involving notably . These changes in the PSU microenvironment lead to a shift from a homeostatic to an inflammatory state. Indeed, immunohistochemical analyses have revealed that inflammation and lymphocyte infiltration can be detected even in the infraclinical acneic stages, highlighting the importance of the early stages of the disease.

View Article and Find Full Text PDF